Minggu, 07 Maret 2010

CONTOH SOAL MINIMASI MENGGUNAKAN METODE M (Bag.2)

MASALAH MINIMASI

Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap unit P memerlukan uang sebesar $50 dan dapat memberikan rate of return per unitnya per tahun sebesar 10% sedangkan untuk setiap unit Q memerlukan uang sebesar $100, namun memberikan rate of return per unit per tahunnya sebesar 4%. Perusahaan tersebut telah mempertimbangkan bahwa target rate of return dari kedua usaha tersebut paling sedikit adalah $60.000 per tahunnya.

Kemudian hasil analisis perusahaan memperoleh data bahwa setiap unit P dan Q mempunyai index risiko masing-masing 8 dan 3. Padahal perusahana ini tidak mau menanggung resiko yang terlalu besar. Kebijakan lainnya yang diinginkan oleh pemimpin khususnya untuk cabang usaha P ditargetkan paling sedikit jumlah investasinya adalah $3.0000.

Bagaimana penyelesaian persoalan diatas apabila perusahaan bermaksud untuk tetap melakukan investasi tetapi dengan menekan atau meminimasi resiko sekecil mungkin. Berapa unit masing-masing usaha dapat diinvestasikan ?(metode grafis dan metode simpleks)

JAWABAN

1. Metode Grafis

Fungsi Tujuan : z = 8x + 3y

Fungsi Pembatas : 50x + 100y ≤ 1.200.000

50x ≥ 3.000

5x + 4y ≥ 60.000

Grafisnya :

50x + 100y ≤ 1.200.000

50x + 100y = 1.200.000

Jika x = 0 maka y = 12.000, jadi koordinatnya (0,12.000)

Jika y = 0 maka x = 24.000, jadi koordinatnya (24.000,0)

50x ≥ 3.000

50x = 3.000

x = 60

5x + 4y ≥ 60.000

5x + 4y = 60.000

Jika x = 0 maka y = 15.000, jadi koordinatnya (0,15.000)

Jika y = 0 maka x = 12.000, jadi koordinatnya (12.000,0)

MASALAH MINIMASI

Jadi Solusi yang ditawarkan :

x

y

Z = 8x + 3y

Keterangan

12.000

0

96.000

24.000

0

192.000

4.000

10.000

62.000

* Minimum

1. Metode Simpleks

Fungsi Tujuan : z = 8x + 3y

Fungsi Pembatas : 50x + 100y ≤ 1.200.000

50x ≥ 3.000

5x + 4y ≥ 60.000

Bentuk baku diperoleh dengan menambahkan variabel slack pada kendala pertama, mengurangkan variabel surplus pada kendala kedua. Sehingga diperoleh :

Minimumkan : Z = 8x + 3y + 0S1 + 0S2 + 0S3 +MA1 + MA2

50x + 100y + S1 = 1.200.000

50x - S2 + A1 = 3.000

5x + 4y – S3 + A2 = 60.000

Table Simpleks Awal

Basis

X1

X2

S1

S2

S3

A1

A2

NK

Rasio

Z

55M-8

4M-3

0

-M

-M

0

0

63.000M

S1

50

100

1

0

0

0

0

1.200.000

1.200.000:50=24.000

A1

50

0

0

-1

0

1

0

3.000

3.000:50 = 60

A2

5

4

0

0

-1

0

1

60.000

60.000 : 5 = 12.000

Iterasi Pertama

Basis

X1

X2

S1

S2

S3

A1

A2

NK

Rasio

Z

0

4M-3

0

0,1M-0,16

0

-1,1M+0,16

0

59.700M+480

S1

0

100

1

1

0

-1

0

1.197.000

11.970

X1

1

0

0

-0,02

0

0,02

0

60

A2

0

4

0

0,1

-1

-0,1

1

5700

1.425

Iterasi Kedua

Basis

X1

X2

S1

S2

S3

A1

A2

NK

Z

0

0

0

-0,085

M-0,75

-M+0,085

-M+0,75

54.000M+4755

S1

0

0

1

-1,5

25

1,5

-25

1.054.500

X1

1

0

0

-0.02

0

0.02

0

60

X2

0

1

0

0,025

-0,25

-0,025

0,25

1425

Iterasi kedua adalah optimal karena koefisien pada persamaan Z semuanya non positif, dengan X1= 60, X2 = 1425 dan Z = 54.000M+4755

1 komentar:

wonkedhan mengatakan...

koreksi bang!! itu bukan 5700, tapi 59700

60000 - (5 * (3000/60)) = 59700
60000 - (300) = 59700

jadi pada iterasi kedua, EV nya bukan pada baris ketiga, melainkan baris ke 1 (S1)..

lalu pada S3 bukan 0 bang, tapi -M, (fungsi Z)

mohon petunjuk bang

Poskan Komentar