2. Persamaan matematis suatu program linier adalah sebagai berikut :
Minimasi : Z = 6X1 + 7,5X2
Dengan pembatas :
7X1 + 3X2 ≥ 210
6X1 + 12X2 ≥ 180
4X2 ≥ 120
X1, X2 ≥ 0
Carilah harga X1 dan X2 ?
JAWABAN
Pada kasus ini kita akan menggunakan metode simplex M (BIG – M), hal ini dikarenakan pada kasus ini pertidk samaan pembatasnya menggunakan ≥ (lebih dari sama dengan).
Persamaan Tujuan : Z - 6x1 - 7,5X2 - 0S1 - 0S2 - 0S3 = 0 Baris 0
Persamaan Kendala : 7x1 + 3x2 - S1 +A1 = 210 Baris 1
6x1 + 12x2 - S2 +A2 = 180 Baris 2
4x2 - S3 + A3 = 120 Baris 3
Bagi kendala pertidaksamaan jenis ≤, maka variabel slack ditambahkan untuk menghabiskan sumber daya yang digunakan dalam kendala. Cara ini tidak dapat diterapkan pada kendala pertidaksamaan jenis ≥ dan kendala persamaan (=) persamaan diatas diperoleh karena tanda ≥ harus mengurangi variable surplus.
Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi :
Z = 6x1 + 7,5X2 + 0S1 + 0S2 + 0S3 + MA1 + MA2 + MA3
Table simplex awal dibentuk dengan A1, A2, dan A3 sebagai variable basis, seperti table berikut :
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
A1
|
A2
|
A3
|
NK
|
RASIO
|
Z
|
13M-6
|
19M-7,5
|
-M
|
-M
|
-M
|
0
|
0
|
0
|
510M
| |
A1
|
7
|
3
|
-1
|
0
|
0
|
1
|
0
|
0
|
210
|
210 : 3 = 70
|
A2
|
6
|
12
|
0
|
-1
|
0
|
0
|
1
|
0
|
180
|
180 : 12 = 15
|
A3
|
0
|
4
|
0
|
0
|
-1
|
0
|
0
|
1
|
120
|
120 : 4 = 30
|
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan seluruh NBV masih mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2 terpilih sebagai entry variable karena x2 memiliki nilai koefisien positif yang paling besar, dan A3 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 2 karena memiliki rasio paling kecil.
Langkah-langkah ERO Iterasi Pertama :
ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 2
½ x1 + x2 - 1/12 S2 +1/12 A2 = 15
ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0
Z = 9/4 x1 + 0S1 + 15/24 S2 + 0S3 + MA1 + [ M - 15/24]A2 + MA3 + 112,5
ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 1
11/2 x1 + ¼ S2 + A1 - 1/4 A2= 165
ERO 4 : Menjadikan nilai koefisien x2 berharga 0 pada baris 3
-2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60
Konversi bentuk standard iterasi Pertama :
Z = 9/4 x1 + 0S1 + 15/24 S2 + 0S3 + MA1 + [ M - 15/24]A2 + MA3 + 112,5
11/2 x1 + ¼ S2 + A1 - 1/4 A2 = 165
-2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60
½ x1 + x2 - 1/12 S2 +1/12 A2 = 15
Tabel Iterasi Pertama
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
A1
|
A2
|
A3
|
NK
|
RASIO
|
Z
|
-13/2M-6
|
0
|
0
|
7/12 - 15/24
|
-M
|
0
|
1/24 - M
|
0
|
225M – 112,5
|
*
|
A1
|
11/2
|
0
|
0
|
1/4
|
0
|
1
|
-1/4
|
0
|
165
|
165 : 5,5 = 30
|
A3
|
-2
|
0
|
0
|
1/3
|
-1
|
0
|
-1/3
|
1
|
60
|
*
|
X2
|
½
|
1
|
0
|
-1/12
|
0
|
0
|
1/12
|
0
|
15
|
15 : 0,5 = 30
|
Pada fungsi tujuan masih terdapat variable dengan nilai koefisien positif, oleh karena itu lakukan iterasi kedua.
Langkah-langkah ERO Iterasi Kedua:
ERO 1 : Menjadikan nilai koefisien x1 berharga 1 pada baris 1
x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30
ERO 2 : Menjadikan nilai koefisien x1 berharga 0 pada baris 0
Z = 0S1 + 0,725 S2 + 0S3 + MA1 -0,4A1 + [ M – 0,725]A2 + MA3 + 180
ERO 3 : Menjadikan nilai koefisien x1 berharga 0 pada baris 2
0.5 A2 = 0
ERO 4 : Menjadikan nilai koefisien x1 berharga 0 pada baris 3
0,39 S2 - S3 +0,36A1 + 0,21 A2 + A3 = 120
Konversi bentuk standard iterasi kedua :
Z = 0S1 + 0,725 S2 + 0S3 + [M -0,4]A1 + [ M – 0,725]A2 + MA3 + 180
x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30
0.5 A2 = 0
0,39 S2 - S3 + 0,36A1 + 0,21 A2 + A3 = 120
Tabel Iterasi Kedua
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
A1
|
A2
|
A3
|
NK
|
Z
|
0
|
0
|
0
|
-0,725
|
0
|
-M+0,4
|
-1/2M+0,725
|
M
|
-180
|
x1
|
1
|
0
|
0
|
1/22
|
0
|
2/11
|
-1/22
|
0
|
30
|
A3
|
0
|
0
|
0
|
0
|
0
|
0
|
½
|
0
|
0
|
X2
|
0
|
0
|
0
|
0,39
|
-1
|
0,36
|
0,21
|
1
|
120
|
Iterasi kedua adalah optimum karena koefisien pada persamaan Z semuanya non positif, dengan x1 = 30, x2 = 120 dan z=-180.
3. PT Unilever bermaksud membuat 2 jenis sabun, yakni sabun bubuk dan sabun batang. Untuk itu dibutuhkan 2 macam zat kimia, yakni A dan B. jumlah zat kimia yang tersedia adalah A=200Kg dan B=360Kg.
Untuk membuat 1Kg sabun bubuk diperlukan 2 Kg A dan 6 Kg B. untuk membuat 1 Kg sabun batang diperlukan 5 Kg A dan 3 Kg B. bila keuntungan yang akan diperoleh setiap membuat 1Kg sabun bubuk = $3 sedangkan setiap 1 Kg sabun batang = $2, berapa Kg jumah sabun bubuk dan sabun batang yang sebaiknya dibuat ?
JAWABAN
Pemodelan matematika :
Maksimumkan : Z = 3x1 + 2x2
Pembatas : 2x1 + 5x2 = 200
6x1 + 3x2 = 360
Persamaan Tujuan : Z - 3x1 - 2x2 = 0 Baris 0
Persamaan Kendala : 2x1 + 5x2 + A1 = 200 Baris 1
6x1 + 3x2 + A2 = 360 Baris 2
Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi :
Z = 3x1 - 2X2 + MA1 + MA2
Basis
|
x1
|
x2
|
A1
|
A2
|
NK
|
Rasio
|
Z
|
8M-3
|
8M+2
|
0
|
0
|
560M
| |
A1
|
2
|
5
|
1
|
0
|
200
|
200:5=40
|
A2
|
6
|
3
|
0
|
1
|
360
|
360:3=120
|
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan belum seluruhnya NBV mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2 terpilih sebagai entry variable karena x2 memiliki nilai koefisien negatif, dan A1 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 1 karena memiliki rasio paling kecil.
Langkah-langkah ERO Iterasi Pertama :
ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 1
0,4x1 + x2 + 0,2A1 = 40
ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0
Z = 3,8x1 + [M-0,4]A1 + MA2 - 80
ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 2
4,8x1 – 0,6A1 + A2 = 240
Konversi bentuk standard iterasi pertama :
Z = 3,8x1 + [M-0,4]A1 + MA2 - 80
0,4x1 + x2 + 0,2A1 = 40
4,8x1 – 0,6A1 + A2 = 240
Basis
|
x1
|
x2
|
A1
|
A2
|
NK
|
Rasio
|
Z
|
4,8M-3,8
|
0
|
0,4-0,4M
|
0
|
240M+80
| |
X2
|
0,4
|
1
|
0,2
|
0
|
40
| |
A2
|
4,8
|
0
|
0,6
|
1
|
240
|
Iterasi pertama adalah optimum karena koefisien pada persamaan Z semuanya positif, dengan x1 = 40, x2 = 240 dan z=240M+80.
16 komentar:
apakah yang dimaksud koefisien itu adalah nilai yang tidak mengandung unsur M?
misal : 19M-7,5 maka koefisiennya adalah -7,5??
thanks .. membantu nih untuk tugas kuliahku ^^
thank banget atas ilmu yang bermanfaat ini,.,.,.,
terimakasih infonya.^^ keep sharing!
@wonkedhan
koefisien yang dimaksud bukan nilai yg tidak mengandung unsur M melain nilai yang mengandung unsur.. misalnya : 3x1+2x2+5
koefisien x1= 3 , koefisien x2 = 2..
mudah-mudahan anda dapat nmengerti..
Mantabbsss, izin ngutip yah, hehe, jangan lupa singgah juga di http://banuaanam.blogspot.com
makasih broooo
thanks bgt,,,
sangat membantu untuk tugas kuliah. :)
Makasih sangat membantu untuk tugas riset operasi :)
Terima kasih mas..
Kebetulan lagi nyari mater RO buat tugas.
Makasih mas...
sangat membantu tugas...
THANKS BGET.. SANGAT BERMANFAAT
THANKS BGET.. SANGAT BERMANFAAT
Bingung di saat menjadikan koefisien x2 berharga 0
Kok bisa x1.nya 9/4 min
Thanks
Bingung di saat menjadikan koefisien x2 berharga 0
Kok bisa x1.nya 9/4 min
Thanks
Posting Komentar