Selasa, 02 Maret 2010

CONTOH SOAL DENGAN MENGGUNAKAN METODE SIMPLEKS (TEKNIK M)

MASALAH MINIMASI -->
2. Persamaan matematis suatu program linier adalah sebagai berikut :
Minimasi : Z = 6X1 + 7,5X2
Dengan pembatas :
7X1 + 3X2 ≥ 210
6X1 + 12X2 ≥ 180
4X2 ≥ 120
X1, X2 ≥ 0
Carilah harga X1 dan X2 ?
JAWABAN
Pada kasus ini kita akan menggunakan metode simplex M (BIG – M), hal ini dikarenakan pada kasus ini pertidk samaan pembatasnya menggunakan ≥ (lebih dari sama dengan).
Persamaan Tujuan : Z - 6x1 - 7,5X2 - 0S1 - 0S2 - 0S3 = 0 Baris 0
Persamaan Kendala : 7x1 + 3x2 - S1 +A1 = 210 Baris 1
6x1 + 12x2 - S2 +A2 = 180 Baris 2
4x2 - S3 + A3 = 120 Baris 3
Bagi kendala pertidaksamaan jenis ≤, maka variabel slack ditambahkan untuk menghabiskan sumber daya yang digunakan dalam kendala. Cara ini tidak dapat diterapkan pada kendala pertidaksamaan jenis ≥ dan kendala persamaan (=) persamaan diatas diperoleh karena tanda ≥ harus mengurangi variable surplus.
Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi :
Z = 6x1 + 7,5X2 + 0S1 + 0S2 + 0S3 + MA1 + MA2 + MA3
Table simplex awal dibentuk dengan A1, A2, dan A3 sebagai variable basis, seperti table berikut :
Basis
X1
X2
S1
S2
S3
A1
A2
A3
NK
RASIO
Z
13M-6
19M-7,5
-M
-M
-M
0
0
0
510M
A1
7
3
-1
0
0
1
0
0
210
210 : 3 = 70
A2
6
12
0
-1
0
0
1
0
180
180 : 12 = 15
A3
0
4
0
0
-1
0
0
1
120
120 : 4 = 30
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan seluruh NBV masih mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2 terpilih sebagai entry variable karena x2 memiliki nilai koefisien positif yang paling besar, dan A3 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 2 karena memiliki rasio paling kecil.
Langkah-langkah ERO Iterasi Pertama :
ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 2
½ x1 + x2 - 1/12 S2 +1/12 A2 = 15
ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0
Z = 9/4 x1 + 0S1 + 15/24 S2 + 0S3 + MA1 + [ M - 15/24]A2 + MA3 + 112,5
ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 1
11/2 x1 + ¼ S2 + A1 - 1/4 A2= 165
ERO 4 : Menjadikan nilai koefisien x2 berharga 0 pada baris 3
-2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60
Konversi bentuk standard iterasi Pertama :
Z = 9/4 x1 + 0S1 + 15/24 S2 + 0S3 + MA1 + [ M - 15/24]A2 + MA3 + 112,5
11/2 x1 + ¼ S2 + A1 - 1/4 A2 = 165
-2x1 + 1/3 S2 - S3 - 1/3 A2 + A3 = 60
½ x1 + x2 - 1/12 S2 +1/12 A2 = 15
Tabel Iterasi Pertama
Basis
X1
X2
S1
S2
S3
A1
A2
A3
NK
RASIO
Z
-13/2M-6
0
0
7/12 - 15/24
-M
0
1/24 - M
0
225M – 112,5
*
A1
11/2
0
0
1/4
0
1
-1/4
0
165
165 : 5,5 = 30
A3
-2
0
0
1/3
-1
0
-1/3
1
60
*
X2
½
1
0
-1/12
0
0
1/12
0
15
15 : 0,5 = 30
Pada fungsi tujuan masih terdapat variable dengan nilai koefisien positif, oleh karena itu lakukan iterasi kedua.
Langkah-langkah ERO Iterasi Kedua:
ERO 1 : Menjadikan nilai koefisien x1 berharga 1 pada baris 1
x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30
ERO 2 : Menjadikan nilai koefisien x1 berharga 0 pada baris 0
Z = 0S1 + 0,725 S2 + 0S3 + MA1 -0,4A1 + [ M – 0,725]A2 + MA3 + 180
ERO 3 : Menjadikan nilai koefisien x1 berharga 0 pada baris 2
0.5 A2 = 0
ERO 4 : Menjadikan nilai koefisien x1 berharga 0 pada baris 3
0,39 S2 - S3 +0,36A1 + 0,21 A2 + A3 = 120
Konversi bentuk standard iterasi kedua :
Z = 0S1 + 0,725 S2 + 0S3 + [M -0,4]A1 + [ M – 0,725]A2 + MA3 + 180
x1 + 1/22 S2 + 2/11A1 - 1/22 A2 = 30
0.5 A2 = 0
0,39 S2 - S3 + 0,36A1 + 0,21 A2 + A3 = 120
Tabel Iterasi Kedua
Basis
X1
X2
S1
S2
S3
A1
A2
A3
NK
Z
0
0
0
-0,725
0
-M+0,4
-1/2M+0,725
M
-180
x1
1
0
0
1/22
0
2/11
-1/22
0
30
A3
0
0
0
0
0
0
½
0
0
X2
0
0
0
0,39
-1
0,36
0,21
1
120
Iterasi kedua adalah optimum karena koefisien pada persamaan Z semuanya non positif, dengan x1 = 30, x2 = 120 dan z=-180.
3. PT Unilever bermaksud membuat 2 jenis sabun, yakni sabun bubuk dan sabun batang. Untuk itu dibutuhkan 2 macam zat kimia, yakni A dan B. jumlah zat kimia yang tersedia adalah A=200Kg dan B=360Kg.
Untuk membuat 1Kg sabun bubuk diperlukan 2 Kg A dan 6 Kg B. untuk membuat 1 Kg sabun batang diperlukan 5 Kg A dan 3 Kg B. bila keuntungan yang akan diperoleh setiap membuat 1Kg sabun bubuk = $3 sedangkan setiap 1 Kg sabun batang = $2, berapa Kg jumah sabun bubuk dan sabun batang yang sebaiknya dibuat ?
JAWABAN
Pemodelan matematika :
Maksimumkan : Z = 3x1 + 2x2
Pembatas : 2x1 + 5x2 = 200
6x1 + 3x2 = 360
Persamaan Tujuan : Z - 3x1 - 2x2 = 0 Baris 0
Persamaan Kendala : 2x1 + 5x2 + A1 = 200 Baris 1
6x1 + 3x2 + A2 = 360 Baris 2
Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A1, A2, dan A3 sehingga fungsi tujuannya menjadi :
Z = 3x1 - 2X2 + MA1 + MA2
Basis
x1
x2
A1
A2
NK
Rasio
Z
8M-3
8M+2
0
0
560M
A1
2
5
1
0
200
200:5=40
A2
6
3
0
1
360
360:3=120
Dari table diatas kita ketahui bahwa semua BFS belum optimal. Hal ini dikarenakan belum seluruhnya NBV mempunyai koefisien yang berharga positif. Oleh karena itu Untuk x2 terpilih sebagai entry variable karena x2 memiliki nilai koefisien negatif, dan A1 menjadi Leaving Variable. Dan yang akan menjadi pivot adalah baris 1 karena memiliki rasio paling kecil.
Langkah-langkah ERO Iterasi Pertama :
ERO 1 : Menjadikan nilai koefisien x2 berharga 1 pada baris 1
0,4x1 + x2 + 0,2A1 = 40
ERO 2 : Menjadikan nilai koefisien x2 berharga 0 pada baris 0
Z = 3,8x1 + [M-0,4]A1 + MA2 - 80
ERO 3 : Menjadikan nilai koefisien x2 berharga 0 pada baris 2
4,8x1 – 0,6A1 + A2 = 240
Konversi bentuk standard iterasi pertama :
Z = 3,8x1 + [M-0,4]A1 + MA2 - 80
0,4x1 + x2 + 0,2A1 = 40
4,8x1 – 0,6A1 + A2 = 240
Basis
x1
x2
A1
A2
NK
Rasio
Z
4,8M-3,8
0
0,4-0,4M
0
240M+80
X2
0,4
1
0,2
0
40
A2
4,8
0
0,6
1
240
Iterasi pertama adalah optimum karena koefisien pada persamaan Z semuanya positif, dengan x1 = 40, x2 = 240 dan z=240M+80.

16 komentar:

Anonim mengatakan...

apakah yang dimaksud koefisien itu adalah nilai yang tidak mengandung unsur M?

misal : 19M-7,5 maka koefisiennya adalah -7,5??

Unknown mengatakan...

thanks .. membantu nih untuk tugas kuliahku ^^

DIAZ EL DIEZIE mengatakan...

thank banget atas ilmu yang bermanfaat ini,.,.,.,

jelangpagi mengatakan...

terimakasih infonya.^^ keep sharing!

Vanz mengatakan...

@wonkedhan
koefisien yang dimaksud bukan nilai yg tidak mengandung unsur M melain nilai yang mengandung unsur.. misalnya : 3x1+2x2+5
koefisien x1= 3 , koefisien x2 = 2..

mudah-mudahan anda dapat nmengerti..

Wahyudi mengatakan...

Mantabbsss, izin ngutip yah, hehe, jangan lupa singgah juga di http://banuaanam.blogspot.com

Unknown mengatakan...

makasih broooo

ama world mengatakan...

thanks bgt,,,
sangat membantu untuk tugas kuliah. :)

Unknown mengatakan...

Makasih sangat membantu untuk tugas riset operasi :)

tes mengatakan...

Terima kasih mas..
Kebetulan lagi nyari mater RO buat tugas.

Young On Stage mengatakan...

Makasih mas...
sangat membantu tugas...

Anis Friyanti mengatakan...

THANKS BGET.. SANGAT BERMANFAAT

Anis Friyanti mengatakan...

THANKS BGET.. SANGAT BERMANFAAT

JODIE POSTERS mengatakan...
Komentar ini telah dihapus oleh pengarang.
Hafid mengatakan...

Bingung di saat menjadikan koefisien x2 berharga 0
Kok bisa x1.nya 9/4 min
Thanks

Hafid mengatakan...

Bingung di saat menjadikan koefisien x2 berharga 0
Kok bisa x1.nya 9/4 min
Thanks

Posting Komentar